Dissection of the adenoviral VA RNAI central domain structure reveals minimum requirements for RNA-mediated inhibition of PKR.
نویسندگان
چکیده
Virus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role. Our results support the existence of a pH- and Mg(2+)-dependent tertiary structure involving pseudoknot formation within the central domain. Unexpectedly, this structure appears to play no direct role in PKR inhibition. Deletion of central domain sequences within a minimal but fully active construct lacking the tertiary structure reveals a crucial role in PKR binding and inhibition for nucleotides in the 5' half of the central domain. Deletion of the central domain 3' half also significantly impacts activity but appears to arise indirectly by reducing its capacity to assist in optimally presenting the 5' half sequence. Collectively, our results identify regions of VA RNAI critical for PKR inhibition and reveal that the requirements for an effective RNA inhibitor of PKR are simpler than appreciated previously.
منابع مشابه
The PKR-binding domain of adenovirus VA RNAI exists as a mixture of two functionally non-equivalent structures
VA RNA(I) is a non-coding adenoviral transcript that counteracts the host cell anti-viral defenses such as immune responses mediated via PKR. We investigated potential alternate secondary structure conformations within the PKR-binding domain of VA RNA(I) using site-directed mutagenesis, RNA UV-melting analysis and enzymatic RNA secondary structure probing. The latter data clearly indicated that...
متن کاملThe Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignmen...
متن کاملAnalysis of adenovirus VA RNAI structure and stability using compensatory base pair modifications
Adenovirus VA RNAs are short non-coding transcripts that assist in maintaining viral protein expression in infected cells. Six sets of mismatch and compensatory base pair mutants of VA RNA(I) were examined by gel mobility and RNA UV melting to assess the contribution of each structural domain to its overall structure and stability. Each domain of VA RNA(I) was first assigned to one of two appar...
متن کاملStructural analysis of adenovirus VAI RNA defines the mechanism of inhibition of PKR.
Protein kinase R (PKR) is activated by dsRNA produced during virus replication and plays a major role in the innate immunity response to virus infection. In response, viruses have evolved multiple strategies to evade PKR. Adenovirus virus-associated RNA-I (VAI) is a short, noncoding transcript that functions as an RNA decoy to sequester PKR in an inactive state. VAI consists of an apical stem-l...
متن کاملThe adenovirus VA RNA-derived miRNAs are not essential for lytic virus growth in tissue culture cells
At late times during a lytic infection human adenovirus type 5 produces ∼10(8) copies per cell of virus-associated RNA I (VA RNAI). This short highly structured RNA polymerase III transcript has previously been shown to be essential for lytic virus growth. A fraction of VA RNAI is processed by Dicer into small RNAs, so-called mivaRNAIs, which are efficiently incorporated into the RNA-induced si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 289 33 شماره
صفحات -
تاریخ انتشار 2014